ConcreteDesigner Bridge designs reinforcement for concrete beams, with given section forces, according to EN 1992-1-1:2004 and national annexes. The program generates a report which includes both graphical and numerical results. The user can easily create a complete report to simplify the presentation to the client.

User manual

Rev: F

User manual

ConcreteDesigner Bridge

1	Gei	neral		. 4
	1.1	Der	notations	5
	1.2	Met	thod	5
	1.3	Step	by step guide to ConcreteDesigner Bridge	6
	1.4	Inpi	ut files	6
	1.4	.1	[Section_forces].xml	6
	1.4	.2	[Input_file].xml	6
	1.4	.3	Handling and editing of files	7
	1.4	.4	Use an existing input file	7
2	Bas	sics .		8
	2.1	But	tons	9
	2.1	.1	Shear dim parameters	10
	2.1	.2	Reinforcement paths	11
	2.1	.3	Graphics plane	12
	2.1	.4	Graphics elevation	14
	2.1	.5	Reinforcement sketch	14
3	File	e		15
	3.1	Pro	ject description	16
4	Inp	ut		17
	4.1	Mat	terial properties	17
	4.2	Cro	ss section	19
	4.3	Cro	ss section variations	20
	4.4	Para	ameters	21
	4.4	.1	Find number of cycles for using Palmgren-Miner rule	23
	4.5	Reb	par layers	25
5	Sec	tion	forces	26
	5.1	Cop	by sectional forces form Excel	27
	5.2	UL	S	28
	5.2	.1	Bending	28
	5.2	.2	Shear	29
	5.3	SLS	S	30
	5.3	.1	Crack control	30
	5.3	.2	Crack width	31
	5.4	Fati	gue	31
	5.4	.1	Bending	33

User manual

ConcreteDesigner Bridge

	5.4.	2	Permanent Shear	34
	5.5	_	luction over support	
	5.6		d section forces	
6	Res	ults.		. 37
	6.1	Ben	ding	. 38
	6.1.	1	Design forces	. 38
	6.1.	2	Reinforcement	. 39
	6.1.	.3	Reinforcement specification	. 42
	6.2	She	ar	. 43
	6.2.	1	Design forces	. 43
	6.2.	2	Reinforcement	. 44
	6.3	Fati	gue	. 46
	6.3.	1	Fatigue bending reinforcement	. 46
	6.4	Rep	ort	. 47
	6.5	Prin	nt Selection	. 47
7	Hel	p		. 49
	7.1	Abo	out	. 49
	7.2	Sup	port	. 50
	7.3	Lice	ense	. 51
8	Hov	w to	read the report	. 52
	8.1	Not	ations used for material properties an sectional forces	. 52
	8.2	Lon	gitudinal reinforcement	. 52
	8.3	She	ar reinforcement	. 53
	8.4	Crae	ck control and crack width	. 53
	8.5	Fati	gue bending reinforcement and concrete	. 54
	8.6		gue shear	

1 General

After choosing result lines from BRIGADE the user can start the program *ConcreteDesigner Bridge*. The program calculates the required amount of reinforcement in ultimate and serviceability limit state and checks fatigue. It is also possible to let the program find the envelope of the needed reinforcement along an optional number of result lines.

Operations

- Moment charts for the chosen lines
- Reduction of section forces over supports
- Calculation of necessary reinforcement with regard to ultimate and serviceability limit state
- Average of necessary reinforcement for a number of lines
- Display of arrangement of transverse reinforcement
- Automatic calculation and distribution of bending reinforcement in ultimate and serviceability limit state
- Check of fatigue of longitudinal (bending) reinforcement
- Choose which/how many sections will be presented in the numerical report

The report includes:

- Moment graphs
 - o ULS, max/min moment graph
 - o SLS, max/min moment graph
- Necessary amount of reinforcement
 - o ULS, bending and shear
 - o SLS
- Amount of used reinforcement
 - o Rebars for bending and shear
- Fatigue
 - o Bending
 - Shear
- Reinforcement sketch
 - Reinforcement sketch in dxf-format

Geometry, sectional forces and results are presented graphically. The charts show all sections from BRIGADE.

This user manual describes the program by showing the methods used for calculations and a step by step guide on how to use the program. The manual also covers all operations in the program, based on where you find them in the menu.

1.1 Denotations

Ec2 EN 1992-1: 2004, design of concrete structures

ULS Ultimate limit state

SLS Serviceability limit state

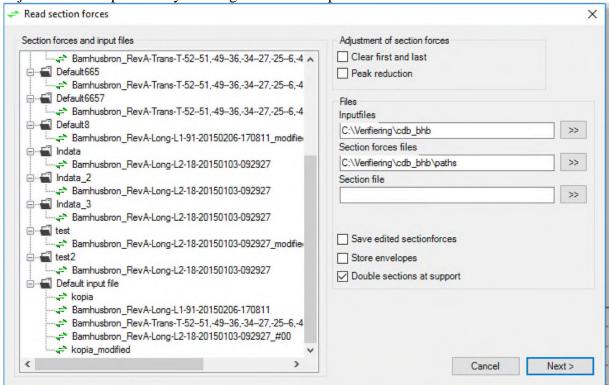
E Load effect

Ed Design value of load effect

R Resistance

Rd Design value of resistance

1.2 Method


The method used to design the reinforcement in a strip is described below.

Design of a region/strip

- One or many result lines, longitudinal or transversal, are chosen for the region where section forces shall be calculated. This is done in BRIGADE.
- BRIGADE finds the design section forces of the reinforcement for the chosen result lines. The section forces are calculated either along or transverse the lines depending on the type of reinforcement is to be designed.
- BRIGADE creates a file containing the following information:
 - o Coordinates and node numbers
 - o Section geometry
 - o Design section forces
- ConcreteDesigner Bridge reads the file and does the following:
 - o Calculates the maximum load effect for every section of each line sends several max/min-values for the same point depending on how many load combinations have been chosen for the current result line.
 - o Designs the reinforcement in ultimate and serviceability limit state for each result line.
 - o Determines the amount of reinforcement needed with regard to fatigue.
- For each section, you may choose which type of graphs will be shown.
 - o Single: *ConcreteDesigner Bridge* displays necessary reinforcement amount and utilization rate for each line
 - o Average: Concrete Design Bridge displays the average values for multiple result lines.
 - o Max/min: Concrete Design Bridge splays the max/min-values for multiple result lines.

1.3 Step by step guide to ConcreteDesigner Bridge

- 1. In BRIGADE, choose result lines in the region where you want to calculate the sectional forces, and perform the calculation. When the calculation is done you will be sent to *ConcreteDesigner Bridge* automatically. If you have done calculations with the same input data before, i.e. the same material, parameters and so on, but with different result lines, you can either choose to use the guide or proceed to chapter 1.4.4.
- 2. You are sent directly to the dialogue *Read section forces*. Do the necessary adjustments and proceed by clicking *Next*. See chapter 5.6 for more information.

1.4 Input files

Input data files are created by BRIGADE and can thereafter be used by ConcreteDesigner Bridge

1.4.1 [Section_forces].xml

Such a file is created every time you run BRIGADE. The file is created automatically and stored in the bdb-catalogue and contains sectional forces and geometry.

1.4.2 [Input_file].xml

This file is created every time you save a file in *ConcreteDesigner Bridge*.

This file contains material data for concrete and reinforcement steel, as well as arrangement of bending and shear reinforcement.

In this file there is a connection to the corresponding [Section_forces].xml.

1.4.3 Handling and editing of files

1.4.3.1 Connection between [Section_forces].xml and [Input_file].xml

- For each combination of lines run in BRIGADE the file [Section_forces].xml is created.
- [Input_file].xml is created when you save your work in *ConcreteDesigner Bridge* for the first time. The file should be saved in the appropriate catalogue (for example the bdb-catalogue).
 - Alternatively you can move all files regarding the design ([Section_forces].xml and [Input_file].xml) to a separate folder. In this case the connection between the two files must be edited in [Input_file].xml. This also applies if you change the name of the [Section_forces].xml file.
- Edit the connection by opening [Input_file].xml in Notepad, or a similar program, and change the path in:
 - <File>
 - <name>[Section_forces].xml </name>
 - </File>

As long as the files are placed in the same folder it is enough to refer to the name of the file, otherwise the entire path is needed.

1.4.3.2 Modification of input for each part

- Start the program brdEc210 (ConcreteDesigner Bridge).
- Open the input file [Input_file].xml.

 The program reads the section forces and geometry from [Section_forces].xml and other input from [Input_file].xml.
- Make your adjustments and save the input file [Input_file].xml with its modifications. You cannot save changes in geometry here, since the geometry is read from the file [Section_forces].xml.

1.4.4 Use an existing input file

If you want to do multiple calculations in one project, with the same input but with different result lines and section forces, you can use the first input file you made, [Input_file].xml, as a template.

- Create a copy of the input file you want to use, [Input_file_copy].xml.
- Run a calculation to find sectional forces in BRIGADE. When *ConcreteDesigner Bridge* is opened just close it.
- Move the new file [Section_forces].xml to the folder where [Input_file_copy].xml is saved. Then change the connection between the files, see chapter 1.4.3.1, so that [Input_file_copy].xml directs to the new file with section forces.

Open *ConcreteDesigner Bridge* and open [Input_file_copy].xml. The file now has the exact same settings as [Input_file].xml and you may proceed directly to the reinforcement arrangement see chapter 6.1.2.1.

2 Basics

The function of the buttons in the start window is described here. The remaining functions are described in the following chapters.

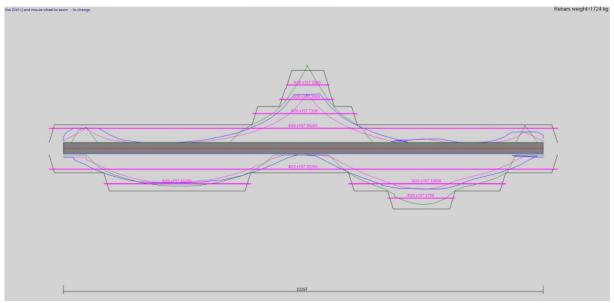
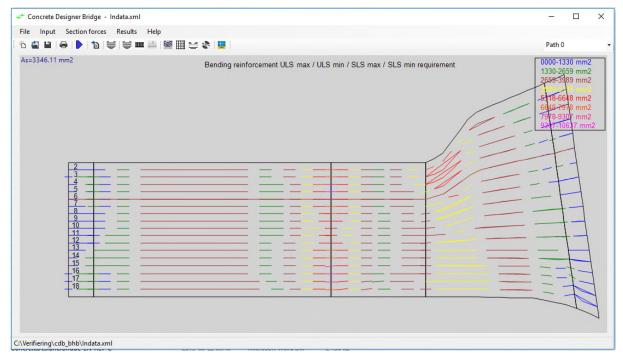
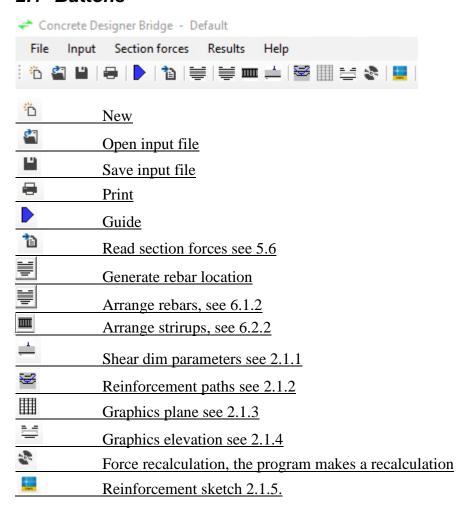




Figure 1 Start elevation

If you have exported both section forces and geometric data the reinforcement amount for bending or shear forces are plotted. Each line describes the amount of reinforcement along the Brigade result line.

2.1 Buttons

2.1.1 Shear dim parameters

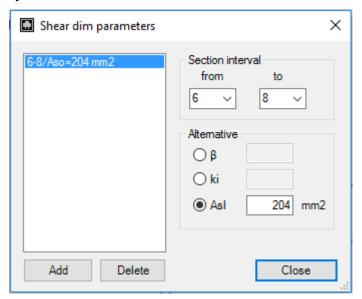
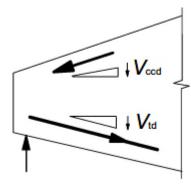



Figure 2 Shear dim parameters

- Ec2 6.32.3(8) for members with loads applied on the upper side within a distance $0.5d \le a_v \le 2.0d$ the contribution of this load to the shear foce V_{Ed} may be reduced by $\beta = a_v/2d$.
- k_i Ec2 6.2.1 (1) for members with inclined chords for the calculation of V_{ccd} and V_{td} . where Vi=ki*M_{Ed}/d

 A_{sl} Given amount of reinforcement, used when calculation the shear resistance accordingly to Ec2 6.2.2. eq (6.2.b)

2.1.2 Reinforcement paths

The user divided the bridge into appropriate number of path the reinforcement amount and arrangement is constant.

The program curtailment the reinforcement according to the specified module. As an alternative the user can manually curtail the reinforcement. The module defines the levels for reinforcing curtailment.

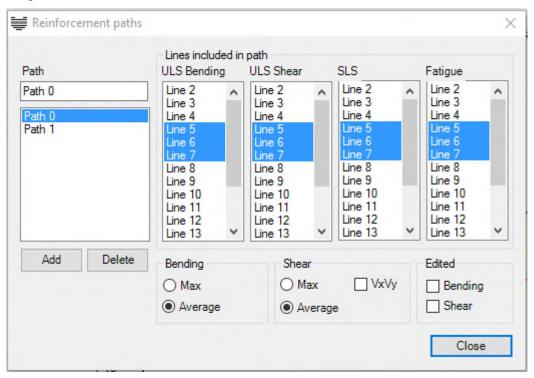


Figure 3 Reinforcement paths

Path	A list of numbers of path, each path is including number of lines		
Add	Adding new path, you can also rename the "path 0" to your own need. To highlight more lines into the list, use <i>Ctrl+Mouse pointer</i> .		
Delete	Delete path, choose one the path# that you don't need		
ULS bending	Decide which line will show in ULS bending reaction		
ULS shear	Decide which line will show in ULS shear reaction		
SLS	Decide which line will show in SLS reaction		
Fatigue	Decide which line will show in fatigue.		
Bending Max	maximum reinforcement amount for the path is calculated		
Bending average	average reinforcement amount for the path is calculated		
Shear Max	maximum reinforcement amount for the path is calculated		
Shear average	average reinforcement amount for the path is calculated		
Shear Vx/Vy	the shear reinforcement is calculated for $\sqrt{V_x^2 + V_y^2}$		

Edited bending if the box is marked means the user has manually curtail the

bending reinforcement, if the box unmark then the program curtailment the reinforcement. For editing the reinforcement in

bending see detailing bars 6.1.2.

Edited shear if the box is marked means the user has manually curtail the shear

reinforcement, if the box unmark then the program curtailment the reinforcement. For editing the reinforcement in shear see. Arrange

stirrup 6.2.2.

2.1.3 Graphics plane

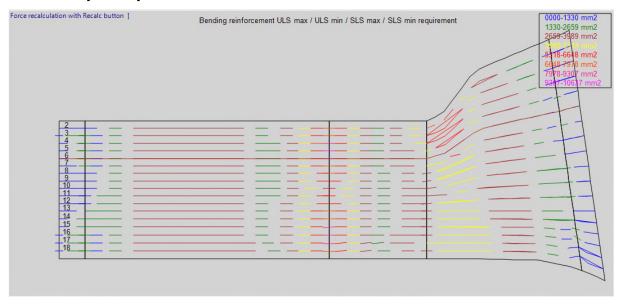
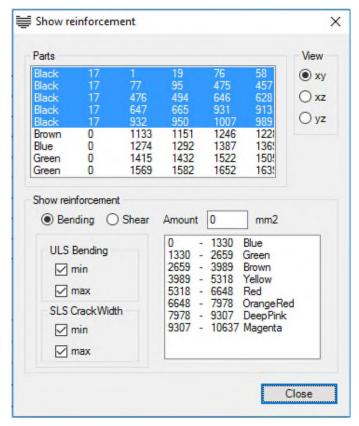



Figure 4 Graphics plan in xy direction

Brown line Centre of current path

Black line Parts of the bridge deck

Other colors Amount of reinforcement accordingly to the legend

Figure 5 Show reinforcement

To open this dialog you will have to "right click" in *Graphics plan* mode. You are able to change different view of the bridge and different type amount of reinforcement react.

Parts part of the deck, numbering comes from BRIGADE View xy view the geometry and reinforcement in the xy-plan

View xz view the xz-plan View yz view the yz-plan

Show reinforcement

Shear show bending reinforcement show shear reinforcement

Amount Amount of dividing the reinforcement in steps. For

"0" means the program will generate automatically.

ULS bending minshow reinforcement for the min section forcesULS bending maxshow reinforcement for the max section forcesSLS shear minshow reinforcement for the min section forcesSLS shear maxshow reinforcement for the min section forces

2.1.4 Graphics elevation

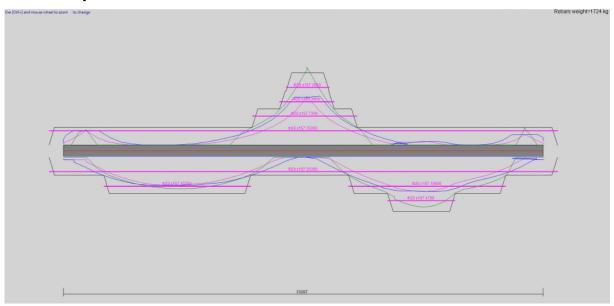


Figure 6 Graphics elevation

A view of elevation of the bridge. The elevation is included the amount of reinforcement in bending and shear and the diagrams.

2.1.5 Reinforcement sketch

The reinforcement sketch is written to a file in dxf format, then the program starts the default program for dxf-files.

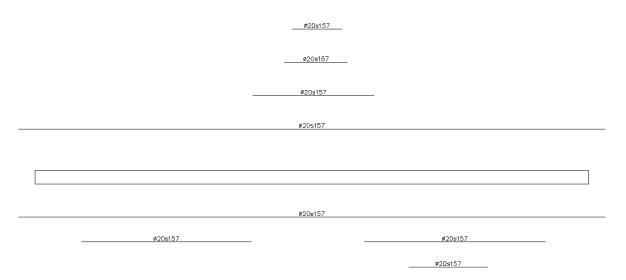


Figure 7 Reinforcement sketch in dwg-file

3 File

Under File you can find the tools; New, Open, information, Save, Save as and Exit.

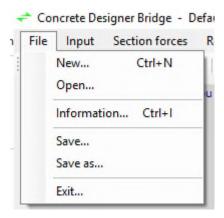


Figure 8 File

3.1 Project description

At Information it is possible to state which project it is, the location of the member, which appendix it is and a short description. This information will be printed in the report.

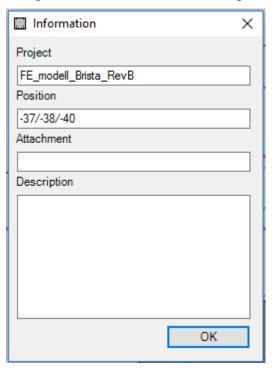


Figure 9 Project description

4 Input

Under the tab *Input* you find settings for material properties, geometry and other parameters.

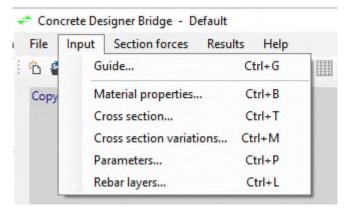


Figure 10 Input data

4.1 Material properties

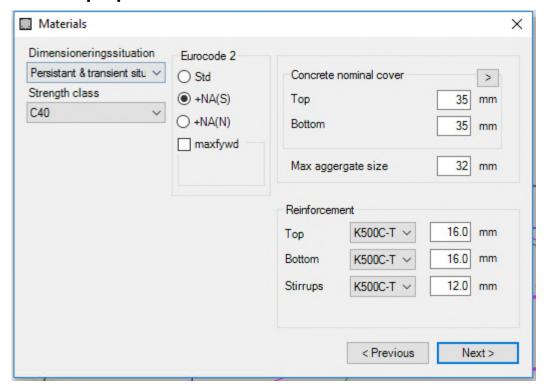


Figure 11 Material properties

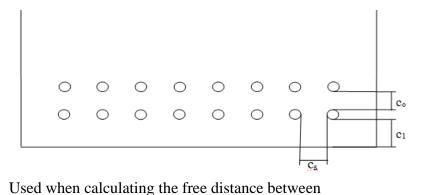
Partial factors for material

Concrete property

the user sets a concrete class according to Ec2, table 3.1. It is also possible to set a concrete class which is not predefined.

Std, +NA(S), +NA(N),

A couple of different national settings can be used in the design. In this version the user can choose between the following:


Std Standard Eurocode

+NA(S) EKS – Swedish national annex

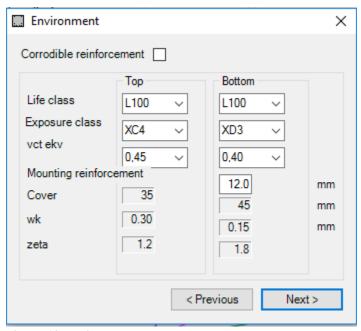
+NA(N) Norwegian national annex

max fywdDesigning the shear reinforcement the user can choose maximum yield stress for the reinforcement.

the program considers other parameters needed to calculate a sufficient concrete cover and minimum distance between longitudinal reinforcement. Stirrups are regarded when calculating concrete cover for beams.

Maximum aggregate size

Concrete nominal cover


reinforcement bars in and between layers.

Reinforcement

Set type and diameter of reinforcement.

The button:

Environment: For environment dependent settings such as structural class and exposure class

Figure 12 Environment

4.2 Cross section

If an input file from Brigade is used the geometry of the cross section will be imported automatically. Otherwise, this dialogue is used for constant cross-sections, if the cross-section varies insert data according to chapter 4.3.

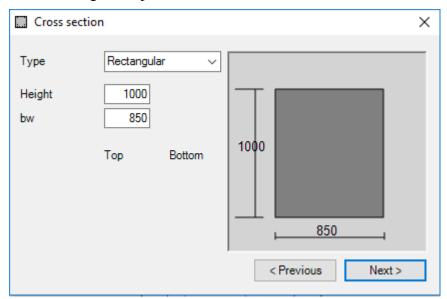


Figure 13 Cross section

Type	Type of cross-section chosen as one of the following, this choice governs which input data is to be given:
	1=rectangular
	2=T-section
	3=L-section
	4=_ section
	5=O-section
	6=I-section
	7=slab strip bw=1000
	8=Through shaped section
	9=Special beam
	10=I-section delta bf
height	Total height of the beam
bw	Width of the web
bf	Total width of the flange (including web width), if there is no flange set b=0.
tf	Flange thickness, if there is no flange set t=0.

Inclined length

ts

4.3 Cross section variations

Used for varying cross-sections. Input is imported automatically from Brigade but can be changed.

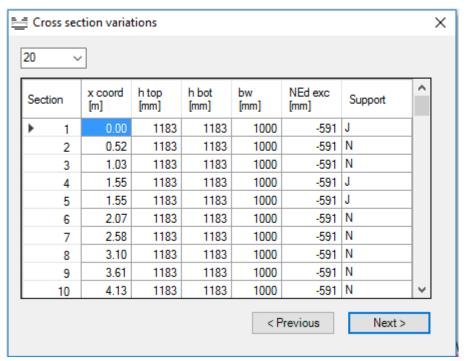


Figure 14 Varaiation of cross section

Xkrd	x-coordinates, from left to right	
h, top	Total height of the beam, used to design top reinforcement.	
h, bot	Total height of the beam, used to design bottom reinforcement. Useful for design of reinforcement in haunched slabs	
bw	Web width	
Nexc	Eccentricity of axial force, given from the top of the section positive upwards. Usually equal to -h/2.	
Support	J- Support in the section N- No support in the section Used to identify supports for moment reduction over supports.	

4.4 Parameters

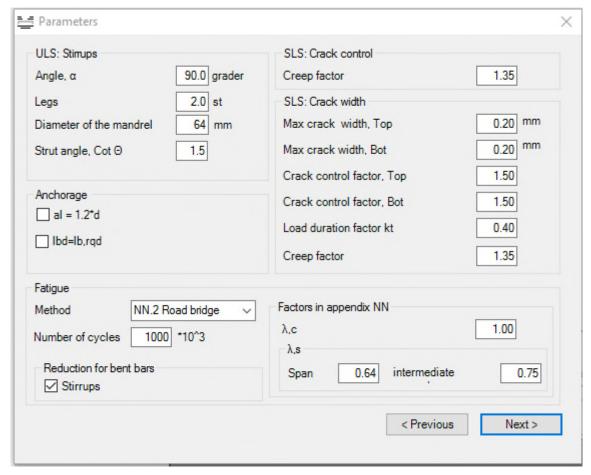


Figure 15 Parameters

ULS: Stirrups:

Alpha, α Angle of the stirrups, in the dialogue for reinforcement

arrangement the user can define different stirrup angles

for different parts of the beam.

Legs Number of legs for stirrups.

Diameter of the mandrel Bending diameter for shear reinforcement, used in

fatigue control

Anchorage length:

al Shift of the tensile force graph is set to 1,2*d,

alternatively calculated according to Ec2.

lbd Check this box to set anchoring length to the basic value.

Fatigue

Choose a method for fatigue calculations:

Method: NN.2 Road bridge

NN.3 Railway bridge

Palmgren-Miner rule

Number of cycles, to find an appropriate number use

chapter 4.5.1 if Palmgren-Miner rule is used

Reduction for bent bars, stirrups Check if there are bent bars or stirrups

SLS: Crack width:

Maximum allowable crack widths

Top Maximum allowed crack width on top of the section.

Bot Maximum allowed crack width on the bottom of the

section.

Crack control factor, Top Safety factor for cracking, ζ , at the top of the section,

used when calculating $f_{ct,fl}=k \cdot f_{ctm}/\zeta$. If ζ is set to zero the following equations will be used to find if the section is

cracked:

 $f_{ct,eff} = f_{ctm}$

 $\sigma_c < f_{ct,eff}$, pure bending

 $\sigma_{cn}\!\!+\!\!\sigma_{cm}\!\!<\!\!f_{ct,eff}$,bending and axial forces

Crack control factor, Bot Safety factor for cracking, ζ , at the bottom of the

section.See above.

Factor kt Factor considering the duration of load, 0,4 or 0,6.

Creep factor Final creep ratio, Ecd, eff= $Ecd/(1+\varphi_{eff})$.

Factors in Appendix NN Settings under Factors in Appendix NN depends on the

type of bridge, railway or road.

If it's a road bridge a correctional factor for steel, λ_s , and one for concrete, λ_c , is set. For a railway bridge the correctional factor should also be multiplied by a

dynamical factor, φ.

If you chose to use Palmgren-Miner rule his section is

not used.

Road Bridge

Lambda, λ_c damage equivalent factor for concrete, see Ec2 Appendix

NN equ. NN.101

Lambda, λ_s damage equivalent factor for fatigue, steel, see Ec2

Appendix NN equ. NN.101

Rail Bridge

Lambda, c*fi damage equivalent factor for steel, λ , multiplied by a

dynamical factor, φ. See Ec2 Appendix NN equ.

NN.106.

Lambda, s*fi damage equivalent factor for concrete, λ, multiplied by a

dynamical factor, φ. See Ec2 Appendix NN equ.

NN.106.

4.4.1 Find number of cycles for using Palmgren-Miner rule

Palmgren-Miner is founded on finding the fatigue damage factor, D_{Ed} , for the steel. This factor is the sum of the number of loading cycles during the life of the structure divided by the resisting number of load cycles during the same time. Thus, the condition is that D_{Ed} should be less than one.

$$D_{Ed} = \sum_{i} \frac{n(\Delta \sigma_i)}{N(\Delta \sigma_i)} < 1$$
 Ec2 6.8.4(2), equation 6.70

where

 $n(\Delta \sigma_i)$ is the applied number of cycles for the stress range $N(\Delta \sigma_i)$ is the resisting number of cycles for the stress range

N is given by the Wöhler graph, Figure 6.30 Ec2. Table 6.3N gives the values of $\Delta\sigma_{RSK}$, k_2 , and N*. The factor γ_s is set to 1,15. $\Delta\sigma_{RSK}$ is the resisting stress range of the reinforcement.

Tabell 1 Resisting stress of reinforcment

$\Delta\sigma_{RSK}$ [MPa]	162,5	
k ₂	9	
N*	10^{6}	
γs	1,15	

 $N(\Delta\sigma_i)$ can then be found in Figure 6.30 using the stress, $\Delta\sigma$, for each axle load. The stress is assumed to vary linearly with the applied load. The stress is set for one of the axle loads, for example 4x140 kN, and gives the stress for the rest of the axle loads.

 $n(\Delta\sigma_i)$ is divided by $N(\Delta\sigma_i)$ for each axle load and the quotients are summed up. If the sum is less than one the reinforcement capacity is large enough, if it isn't the amount of reinforcement has to be increased.

$$D_{Ed} = \sum_{i} \frac{n(\Delta \sigma_{i})}{N(\Delta \sigma_{i})} < 1$$
 Ec2, equation 6.70

If the fatigue damage factor, D_{Ed} , does not satisfy the condition the value of $\Delta\sigma_{140}$ has to be adjusted until the fatigue damage factor is less than 1. Now, when the value of DEd is less than one, it's the value of $N(\Delta\sigma_i)$ for the stress given by 4x140 kN that is the input value that can be used in the box *Number of cycles*.

4.4.1.1 Calculation of $n(\Delta \sigma_i)$ according to Norwegian annex

 n_{life} is given as the annual average daily traffic multiplied by the life and a factor to find the accurate number of cycles for fatigue load.

The fatigue load is divided into groups, depending on the axle load, with a specific share of the applied cycles. Each $n(\Delta \sigma_i)$ is then given as that share of n_{life} .

Table NA 4.6 – Model for fatigue load 3

Axle load [kN]	Share of n [%]
4x80	25
4x100	25
4x120	20
4x140	15
4x160	15

4.5 Rebar layers

In the Rebar layer dialogue you can choose the horizontal distance between the reinforcement bars in each layer. Set number of bars for a beam section. Set spacing for slab strips. If no input is given or the input is zero the number of bars in each layer is calculated by the program. The top row governs top reinforcement and the bottom row bottom reinforcement.

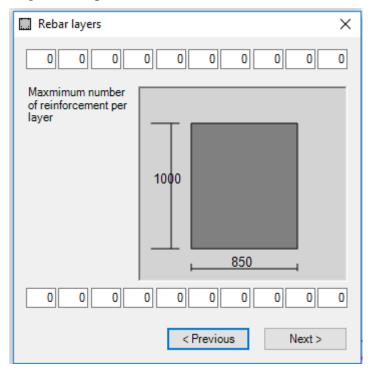
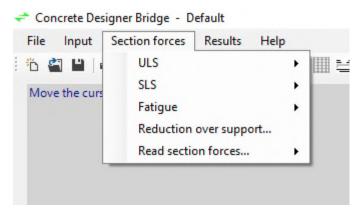



Figure 16 Rebar layer

5 Section forces

In the tab *Section forces* all sectional forces for ULS, SLS and fatigue can be found. The sectional forces are either read from the input file from Brigade or given manually, for example by copying and pasting form Excel, see chapter 5.1.

Figure 17 Section forces

The following can be done in all dialogues concerning sectional forces.

Read sectional forces form a semicolon separated file.

how sectional forces for the chosen line.

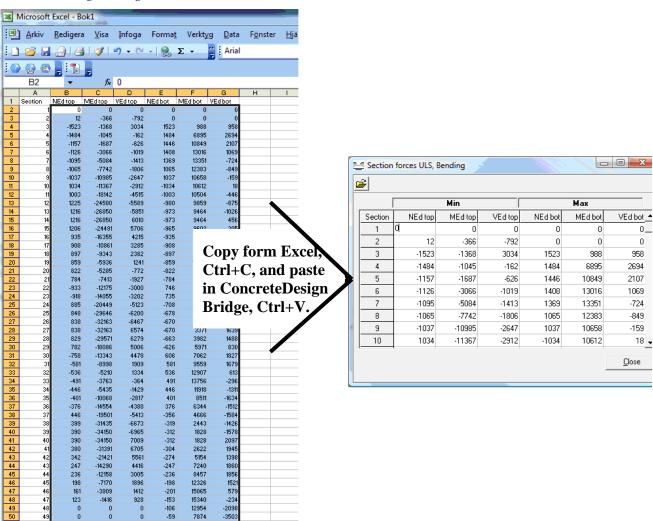
Ctrl+v Paste sectional forces from Excel.

Notations used in the sectional forces dialogues:

NEd Design axial force

MEd Design moment

VEd Design shear force


Fieff Effective creep

TOP Top (minimum graph)

BOT Bottom (maximum graph)

5.1 Copy sectional forces form Excel

To copy sectional forces from an Excel file to one of the sectional forces dialogues, just mark the area you want to copy, copy and paste. Note that the number of columns in Excel and *ConcreteDesign Bridge* has to be the same.

5.2 ULS

Under the tab ULS the sectional forces are shown in ultimate limit state. Design values of axial forces, moments and shear forces are given for both bending and shear.

5.2.1 Bending



Figure 18 ULS bending

List a list of picked result lines from BRIDGADE

Snitt(section) amount of section in each result line.

N_{Ed} min	minimum value of applied axial force
M_{Ed} min	minimum value of applied moment
V_{Ed} min	minimum value of applied shear force
N_{Ed} max	maximum value of applied axial force
M_{Ed} max	maximum value of applied moment
V_{Ed} max	maximum value of applied shear force

5.2.2 Shear

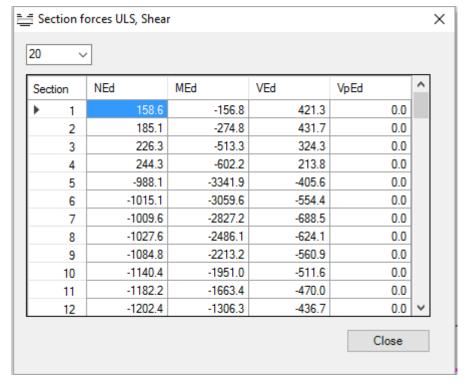


Figure 19 ULS Shear

List	a list of picked result lines from BRIDGADE
N_{Ed}	design value of applied axial force
M_{Ed}	design value of applied moment

 V_{Ed} design value of applied shear force

 V_{pEd} design value of applied shear force perpendicular

5.3 SLS

Under the tab SLS the sectional forces used to control cracking and calculate crack width caused by bending are shown, that is serviceability limit state. In both cases axial forces, moments, and effective creep are given.

5.3.1 Crack control

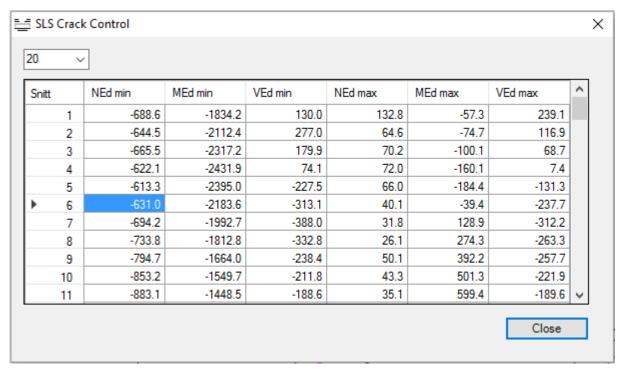


Figure 20 SLS Crack control data

List a lis	t of picked	result lines t	from BRIDGADE
-------------------	-------------	----------------	---------------

Snitt(section)amount of section in each result line.

N _{Ed} min	minimum value of applied axial force
M_{Ed} min	minimum value of applied moment
V_{Ed} min	minimum value of applied shear force
N_{Ed} max	maximum value of applied axial force
M_{Ed} max	maximum value of applied moment
V_{Ed} max	maximum value of applied shear force

5.3.2 Crack width

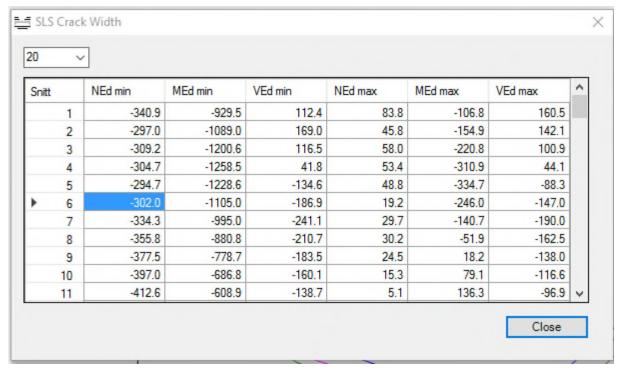


Figure 21 SLS Crack width data

List a list of picked result lines from BRIDGADE

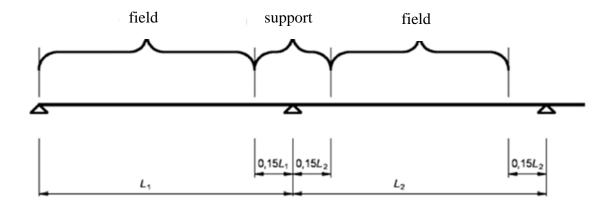
Snitt(section)amount of section in each result line.

 N_{Ed} min minimum value of applied axial force M_{Ed} min minimum value of applied moment V_{Ed} min minimum value of applied shear force N_{Ed} max maximum value of applied axial force M_{Ed} max maximum value of applied moment V_{Ed} max maximum value of applied shear force

5.4 Fatigue

The sectional forces used to calculate fatigue because of permanent, variable and cyclic loads in both bending and shear can be found here.

Fatigue is calculated according to the choice of method, *Road bridge*, *Railway bridge* or *Palmgren-Miner rule* done in the menu *Parameters*, chapter 4.5.


The check is based on sectional forces from the different basic load combinations where design moments for reinforcement are used for variable and cyclic loads only. For permanent loads pure bending is used instead.

The summation of the load effects is done by ConcreteDesign Bridge and type of load, distance to support etc is regarded. The partial coefficient used is presented in the section *Fatigue, Sections forces bending reinforcement* in the report.

The following partial coefficients are used for fatigue control of road bridges see Ec2 NN.2.1 (101):

Control	Permanent loads	Variable loads	Cyclic loads
Concrete, bending	1,0	1,0	1,0
Reinforcement, bending	1,0	0,0	1,4/1,751
Concrete, shear	1,0	1,0	1,0
Reinforcement, shear	1,0	0,0	1,4/1,751

¹1,75 at intermediate support according to the Figure below

The following partial coefficients are used for load combinations in fatigue control of railway bridges.

Control	Permanent loads	Variable loads	Cyclic loads
Concrete, bending	1,0	0,0	1,0
Reinforcement, bending	1,0	0,0	1,0
Concrete, shear	1,0	0,0	1,0
Reinforcement, shear	1,0	0,0	1,0

5.4.1 Bending

Shows bending stresses. The calculation of the variation in bending stress is described below and done using input from Brigade.

Snitt		NEd min	MEd min	VEd min	NEd max	MEd max	VEd max	^
•	1	14.0	-212.4	140.7	14.0	-157.7	140.7	
	2	33.6	-337.7	154.6	33.6	-209.0	154.6	
	3	37.4	-422.8	112.3	37.4	-284.2	112.3	
	4	25.4	-467.8	56.1	25.4	-383.2	56.1	
	5	19.2	-444.6	-73.4	19.2	-409.1	-73.4	
	6	-10.8	-367.3	-128.0	-10.8	-331.0	-128.0	
	7	-6.6	-290.9	-168.6	-6.6	-238.9	-168.6	
	8	-10.3	-204.5	-141.3	-10.3	-164.1	-141.3	
	9	-18.0	-132.3	-116.8	-18.0	-107.0	-116.8	
	10	-27.7	-71.6	-95.3	-27.7	-59.2	-95.3	
	11	-37.3	-25.9	-75.4	-37.3	-15.2	-75.4	v

Figure 22 Permanent bending

The calculation of variation in bending stress in the longitudinal direction of the bridge is based on the following moments:

$$\begin{split} If \mid \Sigma^{Perm} \; Ma + \Sigma^{Var} \; MRL +_{max} \mid \; &> \mid \Sigma^{Perm} \; Ma + \Sigma^{Var} \; MRL +_{min} \mid \\ M_{max} &= \Sigma^{Perm} \; Ma + \Sigma^{Var} \; MRL +_{max} + \Sigma^{Cykl} MRL +_{max} \\ M_{min} &= \Sigma^{Perm} \; Ma + \Sigma^{Var} \; MRL +_{max} + \Sigma^{Cykl} MRL +_{min} \end{split}$$
 else
$$M_{max} &= \Sigma^{Perm} \; Ma + \Sigma^{Var} \; MRL +_{min} + \Sigma^{Cykl} MRL +_{max} \\ M_{min} &= \Sigma^{Perm} \; Ma + \Sigma^{Var} \; MRL +_{min} + \Sigma^{Cykl} MRL +_{min} \end{split}$$

The calculation of variation in bending stress in the transverse direction of the bridge is based on the following moments:

$$\begin{split} If \mid \Sigma^{Perm} \; Ms + \Sigma^{Var} \; MRT +_{max} \mid \; &> \mid \Sigma^{Perm} \; Ms + \Sigma^{Var} \; MRT -_{min} \mid \\ M_{max} &= \Sigma^{Perm} \; Ms + \Sigma^{Var} \; MRT +_{max} + \Sigma^{Cykl} MRT +_{max} \\ M_{min} &= \Sigma^{Perm} \; Ms + \Sigma^{Var} \; MRT +_{max} + \Sigma^{Cykl} MRT -_{min} \end{split}$$
 else
$$M_{max} &= \Sigma^{Perm} \; Ms + \Sigma^{Var} \; MRT -_{min} + \Sigma^{Cykl} MRT +_{max} \\ M_{min} &= \Sigma^{Perm} \; Ms + \Sigma^{Var} \; MRT -_{min} + \Sigma^{Cykl} MRT -_{min} \end{split}$$

5.4.2 Permanent Shear

Shows shear stresses. The calculation of the variation in shear stress is described below and done using input from Brigade.

Snitt		NEd min	MEd min	VEd min	NEd max	MEd max	VEd max	^
•	1	14.0	-212.4	140.7	14.0	-157.7	140.7	
	2	33.6	-337.7	154.6	33.6	-209.0	154.6	
	3	37.4	-422.8	112.3	37.4	-284.2	112.3	
	4	25.4	-467.8	56.1	25.4	-383.2	56.1	
	5	19.2	-444.6	-73.4	19.2	-409.1	-73.4	
	6	-10.8	-367.3	-128.0	-10.8	-331.0	-128.0	
	7	-6.6	-290.9	-168.6	-6.6	-238.9	-168.6	
	8	-10.3	-204.5	-141.3	-10.3	-164.1	-141.3	
	9	-18.0	-132.3	-116.8	-18.0	-107.0	-116.8	
	10	-27.7	-71.6	-95.3	-27.7	-59.2	-95.3	
	11	-37.3	-25.9	-75.4	-37.3	-15.2	-75.4	v

Figure 23 Permanent shear

The calculation of variation in shear stress along the bridge in longitudinal direction is based on the following shear forces:

$$\begin{split} If \mid \Sigma^{Perm} \ V_{SZ} + \Sigma^{Var} \ V_{SZ_{max}} \mid \ > \ \mid \Sigma^{Perm} \ V_{SZ} + \Sigma^{Var} \ V_{SZ_{min}} \mid \\ V_{SZ_{max}} &= \Sigma^{Perm} \ V_{SZ} + \Sigma^{Var} \ V_{SZ_{max}} + \Sigma^{Cykl} \ V_{SZ_{max}} \\ V_{SZ_{min}} &= \Sigma^{Perm} \ V_{SZ} + \Sigma^{Var} \ V_{SZ_{max}} + \Sigma^{Cykl} \ V_{SZ_{min}} \end{split}$$
 else
$$V_{SZ_{max}} &= \Sigma^{Perm} \ V_{SZ} + \Sigma^{Var} \ V_{SZ_{min}} + \Sigma^{Cykl} \ V_{SZ_{max}} \\ V_{SZ_{min}} &= \Sigma^{Perm} \ V_{SZ} + \Sigma^{Var} \ V_{SZ_{min}} + \Sigma^{Cykl} \ V_{SZ_{min}} \end{split}$$

The calculation of variation in shear stress in the transverse direction of the bridge is based on the following shear forces:

$$\begin{split} If \mid \Sigma^{Perm} \; Vaz + \Sigma^{Var} \; Vaz_{max} \mid \; &> \mid \Sigma^{Perm} \; Vaz + \Sigma^{Var} \; Vaz_{min} \mid \\ & Vaz_{max} = \Sigma^{Perm} \; Vaz + \Sigma^{Var} \; Vaz_{max} + \Sigma^{Cykl} \; Vaz_{max} \\ & Vaz_{min} = \Sigma^{Perm} \; Vaz + \Sigma^{Var} \; Vaz_{max} + \Sigma^{Cykl} \; Vaz_{min} \\ else \\ & Vaz_{max} = \Sigma^{Perm} \; Vaz + \Sigma^{Var} \; Vaz_{min} + \Sigma^{Cykl} \; Vaz_{max} \\ & Vaz_{min} = \Sigma^{Perm} \; Vaz + \Sigma^{Var} \; Vaz_{min} + \Sigma^{Cykl} \; Vaz_{min} \end{split}$$

This method is described in Ec2 chapter 6.8.4 (2).

5.5 Reduction over support

It is possible to choose to reduce moments and/or shear forces over supports.

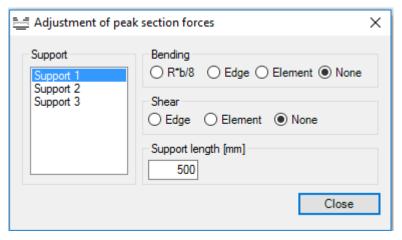


Figure 24 Adjustment of peak section forces

R*b/8 The moment is rounded down by R*b/8, where R=sum

of shear forces on both sides of the support

Edge Used at the end of the support, the sectional force in the

section is interpolated by the program

Element At the edge of the element. The sectional force is chosen

> in the next section to the left or right of the support section. The bigger of these two values is used.

None No reduction

Length of the support. Used if choosing R*b/8 or Edge. **Support length**

5.6 Read section forces

At *Read section forces* sectional forces can be read from [Input_file].xml.

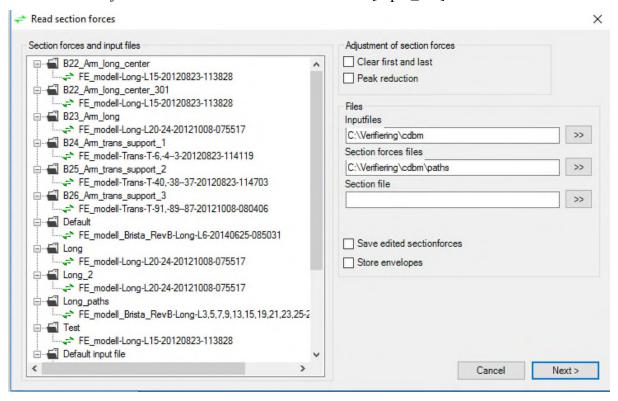


Figure 25 Read section forces

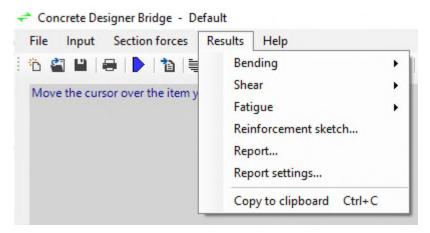
File for section forces File including sectional forces.

Adjustment of section forces If there are extreme values in the first and last section it

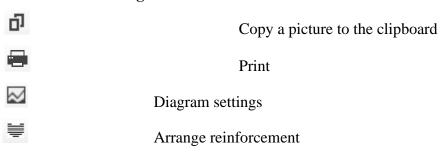
is possible to set these as zero. It is also possible to

reduce top values.

Input files Files that contain information about material properties,


SLS and Fatigue design parameters and reinforcement

arrangement.


Section forces files Geometric data and sections forces from BRIGADE.

Change section force file.

6 Results

Buttons in the dialogues

You choose what results will be shown in each menu by clicking Settings.

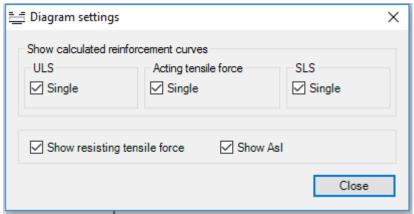


Figure 26 Diagram settings

You can choose to show:

Max/min graphs Graphs showing the maximum reinforcement amount needed for the lines.

Graphs showing average values of reinforcement Average graphs need for the lines.

Single graphs Needed reinforcement for chosen lines in the list Show lines.

Resisting tensile force

Graph that covers the need for reinforcement, presenting the reinforcement given in the dialogues *Bending reinforcement* and *Shear reinforcement*.

6.1 Bending

Under bending you can choose to show moment graphs, needed reinforcement or a reinforcement sketch. You can also rearrange the reinforcement bars.

6.1.1 Design forces

This window shows the bending moments. Except the buttons described above you can also zoom. Number of lines show on diagram is according to how many path you created in the earlier steps.

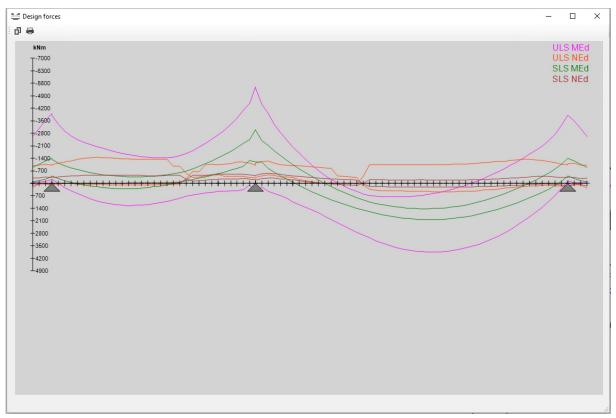


Figure 27 Design forces diagram

Design moment graph

ULS M _{Ed}	Moment in ultimate limit state
ULS N _{Ed}	Normal forces in Ultimate limit state
SLS M _{Ed}	Moment in Serviceability limit state
SLS N _{Ed}	Normal forces in Serviceability limit state

6.1.2 Reinforcement

This window shows the reinforcement required in ultimate, serviceability limit state, fatigue and the capacity of the chosen reinforcement. You can also zoom by using the *ctrl+mouse wheel*. By clicking *Arrange rebars* it is possible to rearrange the reinforcement.

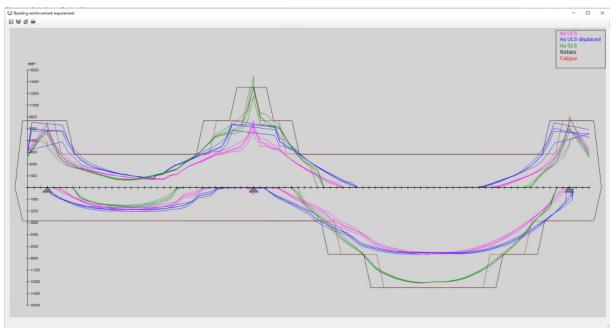


Figure 28 Reinforcement diagram

Reinforcement graph

As, ULS Reinforcement required in ULS

As ULS Displaced Shifted ULS graph

As SLS Reinforcment required in SLS

Rebars Applied reinforcement

Fatigue Fatigue across entire bridge

6.1.2.1 Arrange rebars

Arrange rebars

By clicking the Arrange rebars-button, shown above, you reach this window.

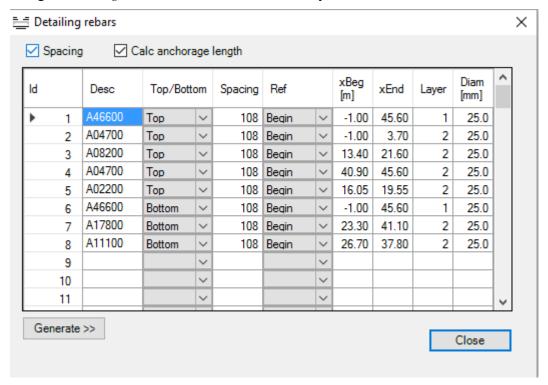


Figure 29 Stirrup

Desc Description

Top/Bot Top or Bottom

Spacing Spacing betweern each stirrup

Area Reinforcement area [mm²]

Ref References of reinforcements position

xBegFirst coordinate, reinforcement [m]. **xEnd**Last coordinate, reinforcement [m].

Layer Reinforcement layer. Used to calculate anchorage.

Diam Reinforcement diameter [mm]

Edge dist. Distance between edge and reinforcement. Used to

calculate anchorage.

Generate rebar location; set Area per module to the available area in each layer. Also, set Resisting curve as max or average depending on if you want the reinforcement to cover maximum or average requirements. The window to the right can be used as

guidance to what area is given by a certain diameter and spacing of the reinforcement.

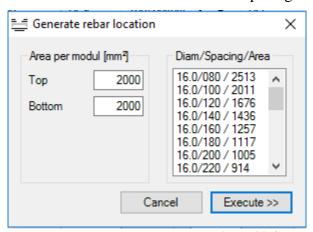


Figure 30 Generate rebar location

6.1.3 Reinforcement specification

Shows reinforcement specification.

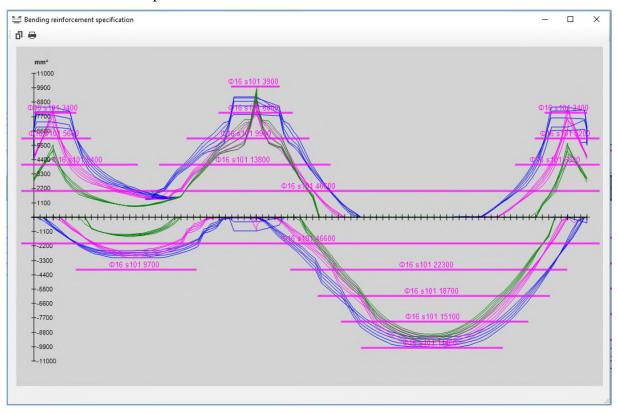


Figure 31 Diagram of bending reinforcement specification

6.2 Shear

Shows shear force graphs and required shear reinforcement.

6.2.1 Design forces

This graph shows the load effect of the shear force, the concrete capacity and required reinforcement.

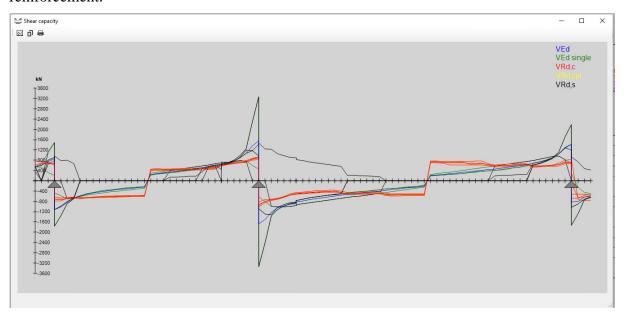


Figure 32 Shear Capacity

Shear force and shear force capacity Eq 6.1-6.2a/b

VEL Design shear force.

VELS: 1 Single line shear for

 $V_{Ed,Single}$ Single line shear force capacity. $V_{Rd,c}$ Concrete shear force capacity.

 $\mathbf{V}_{\mathbf{Rd,s}}$ Steel shear force capacity.

 $V_{Rd,i}$ Inclined shear force capacity.

 $\mathbf{V}_{\mathbf{Rd,p}}$ Axial force.

6.2.2 Reinforcement

This graph shows the required reinforcement with regard to shear such as the applied reinforcement.

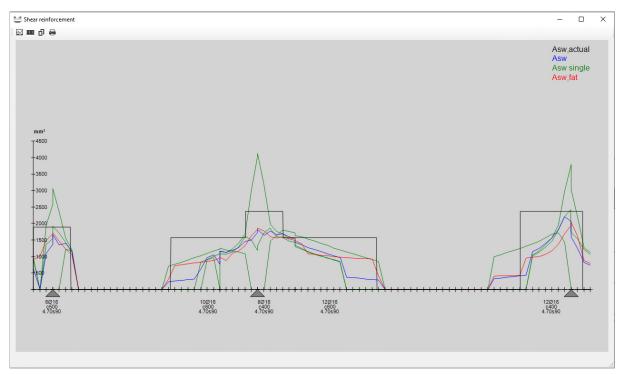


Figure 33 Shear reinforcment diagram

Shear reinforcement graph

Asw Required reinforcement with regard to shear force.

Asw,fat Required reinforcement with regard to fatigue.

Asw, Actual Applied shear reinforcement.

Asw single Single line reinforcement with regard to shear force.

Example:

4Φ16 4 stirrups, Φ16

C500 Spacing 500mm

4S90 4 legged stirrups, angle 90 degrees

6.2.2.1 6.2.2.1 Arrange stirrup

Arrange stirrup

The Arrange stirrup –button, shown above, takes you to this window, where it is possible to rearrange shear reinforcement and change settings for reinforcement diameter and the inclination of the struts and stirrups.

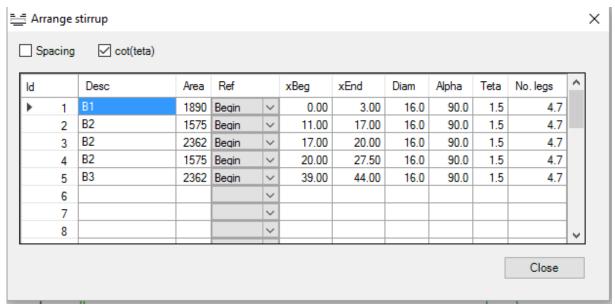


Figure 34 Stirrup

Reinforcement area [mm²] or spacing (change by Area/Spacing

checking the box in the top left corner)

Ref Categorize several range of the brigde

First coordinate of the reinforcement [m] **Xbeg**

xEnd Last coordinate of the reinforcement [m]

Diam Reinforcement diameter [mm]

Inclination of stirrup [deg] **Alpha**

Teta Inclination of strut in [deg] or cot(teta), check the box to

change

Number of legs No Legs

6.3 Fatigue

Shows reinforcement requirements with regard to fatigue.

6.3.1 Fatigue bending reinforcement

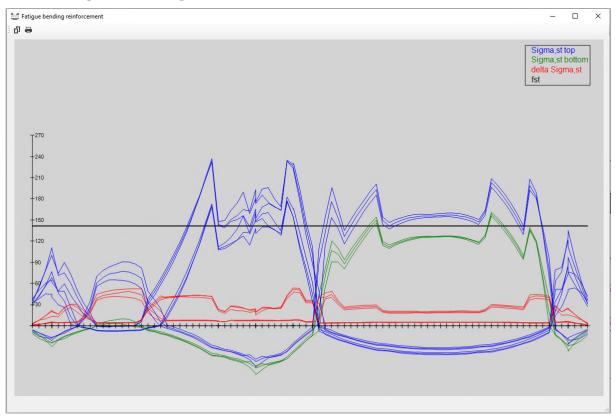
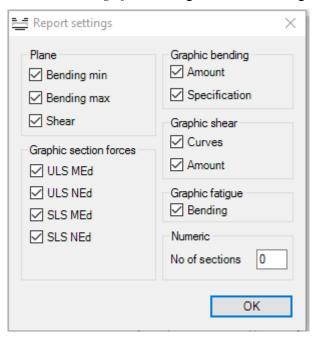


Figure 35 Fatigue bending reinforcment

Sigma,st top Steel stress, top

Sigma,st bottom Steel stress, bottom

delta Sigma,st Stress range


fst Design stress range (maximum)

6.4 Report

Creates a report including all results. Detailed information about the report can be found in chapter 8.

6.5 Print Selection

Under print selection you have the opportunity to choose different graphics which is presentation on the report and the Design forces diagrams for Bending and Shear.

Figure 36 Print selection

bending	

Requirement Include a_s-calculated in graphics **Specification** Include arranged reinforcement

ULS shear

Requirement Include a_{sv}-calculated in graphics

Specification Include arranged stirrups

SLS bending

Crack control Include Crack control

Fatigue

Graphics Include fatigue graphics

User manual

ConcreteDesignerBridge

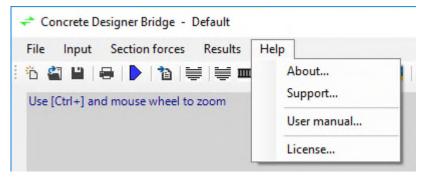
Page 48(55))

Plane (reinforcement plane graph)

Bending min Include bending max **Bending max** Include bending min

Shear Include shear

Graphic section forces (section forces in diagrams)


ULS MEd Include ULS MEd **ULS NEd** Include ULS N_{Ed} **SLS MEd** Include SLS M_{Ed} **SLS NEd** Include SLS N_{Ed}

Numeric Number of sections to be presented between supports.

Give a high value, for example 99, to include all

sections.

7 Help

7.1 About

At *About* a short description of the program is available.

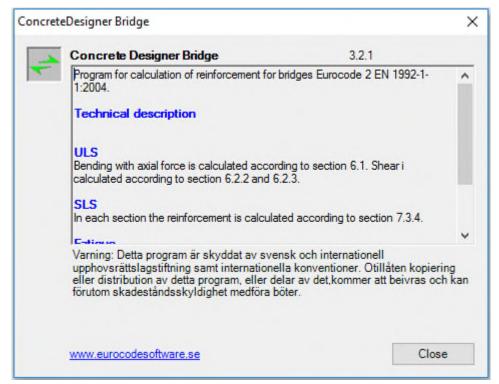


Figure 37 About

7.2 Support

If you get any errors, ideas or questions while using *ConcreteDesign Bridge* you can send a message to Eurocode software AB. To receive a quicker, and better, response please attaches your input file and write down your email address.

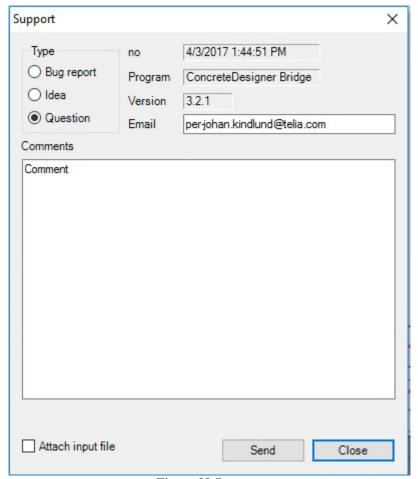
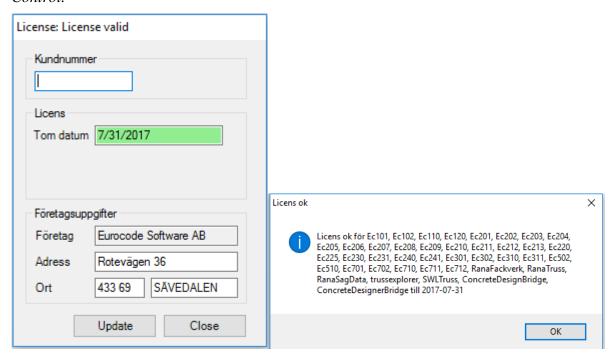



Figure 38 Support

7.3 License

It is simple to update your license, the only thing you need do is to fills in your valid customer number and click the *Update* button. The program will inform which program you have access to. For the customer who want it to update a new a valid date by clicking the button *Control*.

8 How to read the report

A report is created under the tab *Results*, choose *Report*. In the report material properties, sectional forces and required reinforcement is presented. The different parts of the result are shown below. The notations used are explained in each section.

8.1 Notations used for material properties an sectional forces

Ec Modulus of elasticity of concrete

fccDesign value of concrete compressive strengthfctDesign value of concrete tensile strengthfst, fscDesign value of reinforcement strengthfctk0,05Characteristic value of concrete tensile strength

ecu ultimate compressive strain in concrete
Ecm mean value of modulus of elasticity of concrete

fcm Mean value of modulus of elasticity of concrete fcm

fi diameter

c input concrete coverc1 Minimum concrete cover

co Least free distance between parallel bars in different layers
 cs Least free distance between parallel bars in one layer

Fieff effective creep

Fakt factor used in fatigue calculations, EN 1992-2 NN.2.1 (101)

NEd Design value of applied axial force
MEd Design value of applied bending moment
VEd Design value of applied shear force

bw width of web
bf width of flange
h total height
t thickness of flange
ts inclined length

nexc eccentricity of axial force, given form the top of the section, positive upwards

xkrd x-coordinate

8.2 Longitudinal reinforcement

Required reinforcement amount is calculated in ULS and SLS. The applied reinforcement, denoted as *Actual* in the dialogue, is also presented in a table.

Parameters ————————————————————————————————————					
Max crack width top 0.20 mm					
Max crack width bottom 0.20 mm					
Crack control factor top					
Crack control factor bottom					
Number of cycles					
ULS, Calculated longitudinal reinforcement —					
Line Sec d,t as,t layers,top d,b as,b layers,bot					
no no mm mm2 mm mm mm mm mm2 mm mm mm					
SLS, Calculated longitudinal reinforcement —					
Line Sec d,t as,t layers,top d,b as,b layers,bot					

no no mm mm2 mm mm mm mm mm2 mm mm mm mm

Line Line concerned along or across the FE-model.

SectionConcerned sectiond,tEffective height, topas,tReinforcement area, top

layers, top Spacing in each layer, top. First column shows spacing in first layer etc.

d, b Effective height, and bottom.as,b Reinforcement area, bottomlayers, bot spacing in each layer, bottom

8.3 Shear reinforcement

Required reinforcement with regard to shear force in ULS.

ULS, Calculated shear reinforcement (Ec2 6.2.2 & 6.2.3)

Lin Sec VEd VRd,c VRi VRd,s fi Alpha Teta Asw legs Spacing e no kN kN kN kN mm mm2/m pc mm

Line Concerned line, along or across the FE-model.

Section Concerned section

VEd Design value of applied shear force VRd,c Shear resistance of concrete.
VR,i Shear resistance of concrete VRd,s Shear resistance of reinforcement

fi diameter

Alpha Stirrup inclination.

Teta Strut inclination.

Asw Area of stirrups.

Legs Number of legs/stirrup.

Spacing spacing

8.4 Crack control and crack width

In serviceability limit state the control is done for the actual cross-section, both tensile and compressive reinforcement is considered. A control of cracking is made and crack widths are calculated. The crack widths are calculated in the centre of gravity of the outermost layer of reinforcement.

Stre	ss lim	itati	ons (i	Ec2 7.	2)				
Line	Sect	std	Z	aid	iid	Sigma,cc	Sigma,ct	Sigma,st	
no	no		m	m2	m4	MPa	MPa	MPa	
Cracl	k widt	h cal	culat	ion (E	c2 7.3.	4)			

C:\Programdokumentation\Användardokumentation\ConcreteDesignerBridge_EN_Rev_F.docx

Line	Sect	kt	Srm	Msr	Sigma,st	esm-ecm	wk
no	no		mm	kNm	MPa	promille	mm

Line Concerned line along or across the FE-model.

Section Concerned section.

std state

z height of compressive zoneaid area of effective cross-section

iid second moment of inertia of the effective cross-section

Sigma,cc compressive stress in concrete sigma,ct tensile stress in concrete

Sigma,st steel stress

kt loading factor according to Ec2 7.3.4 (2)

Srm mean cracking distance.

Msr cracking moment

esm-ecm strain difference between steel and concrete

wk characteristic cracking distance

8.5 Fatigue bending reinforcement and concrete

In fatigue the control is made for the real cross-section, that is, both applied tensile and compressive reinforcement are considered. Bending caused by fatigue is calculated for both reinforcement and concrete.

Fatigue reinforcment bending, (Ec2 NN.101/NN.106)							
Lambda,s,span							
Lambda,s,support							
Delta Sigma,s,equ top, expression (Ec2 6.71) 141.3							
Delta Sigma, s, equ bottom, expression (Ec2 6.71) 141.3							
Delta Sigma,sdst							
Steel top Steel bottom							
Line Sect Sst Sst dst Sst dst							
no no MPa MPa MPa MPa MPa							
Fatigue bending concrete (Ec2 6.8.7)							
k1=Sigmac/fcd,fat / k2=0,5+0,45*Sigmac,min/fcd,fat (Ec2 6.77)							
Lambda,c							
fcd, fat expression (Ec2 6.76)							
Sigma,cc,top Sicma,cc,bottom							
Line Sect min max k1 k2 min max k1 k2							
no no MPa MPa MPa MPa							

Line Concerned line, along or across the FE-model.

Section Concerned section.

Sst steel stress

dst damage equivalent stress range, Ec2 equ NN.101

Sigma,cc compressive stress, concrete

k1 constant for fatigue, found according to Ec2 6.8.7

k2 constant for fatigue

ue, found according to Ec2 6.8.7

8.6 Fatigue shear

Also, a control of shear due to fatigue is performed. Equation 6.77 in Ec2 section 6.8.7 is used when there is no shear reinforcement, otherwise equations 6.78 and 6.79 are used.

Fatigue bending shear, expression (Ec2 6.77 or 6.78 & 6.79) k1=Sigmac/fcd, fat / k2=0,5+0,45*Sigmac,min/fcd,fat k1=VEd/VRd,c / k2=0,5+0,45*VEd/VRd,c fcd, fat..... Sigmac / VEd/VRd,c.... Sigmasw..... k1 k2 Min Line Sec teta Max Max Delta MPa MPa MPa nr Mpa Мра nr

Line Concerned line, along or across FE-model

SectionConcerned sectionTetaInclination of strut.SigmacConcrete stressSigmaswSteel stress, stirrups

k1 given by Ec2 6.8.7 equ. 6.77 or equ. 6.78 and 6.79 depending on if there are shear reinforcement
k2 given by Ec2 6.8.7 equ. 6.77 or equ. 6.78 and 6.79 depending on if there are shear reinforcement